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Graphical determination of principal stress directions for slickenside 
lineation populations: an attempt to modify Arthaud's method 
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Abstrac t - -A  new method of graphic determination of principal stress directions is proposed for slickenside 
populations produced in anisotropic rocks. Arthaud's concept of movement planes is advanced through studying 
variations in their pattern relative to the changing values of the principal stresses. These variations are 
recognizable by means of a simple test based on the Bott equation. In contrast to Arthaud's method, the proposed 
procedure is applicable to fault populations resulting from stress fields geometrically reproducible by a triaxial 
ellipsoid. A field example is given to demonstrate the practical utility of the method. 

INTRODUCTION 

PRINCIPAL stress directions responsible for faulting in 
isotropic rocks can be inferred directly from the orienta- 
tions of fault planes (Anderson 1951). However, most 
slickenside lineations encountered in the field are those 
produced in anisotropic rocks. For such media the 
relationship between the orientations of the principal 
stresses and the directions of slip on variably oriented 
pre-existing planes (joints, older faults or bedding sur- 
faces) is more complex, with the magnitude of the 
intermediate stress 0- 2 playing a significant role (Wallace 
1951, Bott 1959). 

Two graphical methods of analysing slickenside linea- 
tion populations have been developed so far. To apply 
Angelier's method (Angelier 1975, Angelier & Mechler 
1977) the sense of movement on each fault examined 
must be known. This is not the case when employing the 
method by Arthaud (1969), in which it is sufficient to 
know the movement sense merely for a part of the 
slickensides. The Arthaud (1969) method is based on the 
concept of movement planes. These are the planes 
perpendicular to fault surfaces and containing the direc- 
tion of slickenside striae. Applying Arthaud's method to 
a fault population active in a single tectonic episode, one 
should: 

(1) plot the poles to the fault planes and the penetra- 
tion points of the striae on a projection net; 

(2) join each fault pole and the corresponding striae 
penetration point with a great circle, thus tracing indi- 
vidual movement planes (M-planes) and 

(3) plot the poles (TrM-points) to the movement 
planes. 

According to Arthaud (1969), all the M-planes should 
intersect at one, two or three points that are the axes of 
the same number of mutually perpendicular great circles 
of zrM-points. The points of intersection of the move- 
ment planes correspond to an orthogonal system of 
deformation axes which determine the directions of 
maximum shortening (Z),  maximum extension (X) and 
intermediate deformation (Y) of the rock mass under 

investigation. These axes can be assigned as Z, X or Y 
according to the sense of relative movement of the fault 
walls. The axes of deformation are only indirectly related 
to those of the principal stresses. 

Carey (1976) showed that the Arthaud method can be 
successfully applied only to slickenside lineation popula- 
tions that originated in radial stress fields (geometrically 
represented by a uniaxial ellipsoid). The only axis of 
deformation obtainable from such populations was also 
proved by her (Carey 1976) to correspond dire'ctly to the 
revolution axis of the stress ellipsoid. 

The graphical method proposed here is applicable to a 
general, triaxial stress state. The method is based on the 
pattern of behaviour of movement planes recognized 
while the magnitude ratio between the principal stresses 
is changing. It may, therefore, be considered as a modifi- 
cation and elaboration of the Arthaud method. 

ARRANGEMENT OF M O V E M E N T  PLANES 

In order to study the patterns of movement planes for 
various relationships between the principal stresses, a 
simple test was performed. The effects of a few different 
stress fields on an assemblage of variably oriented planes 
of anisotropy were simulated by means of computing the 
directions of maximum shearing stress on these planes, 
according to the formula derived by Bott (1959) 

n{ 
tan 0 = ~m m2 -- (1 -- n 2) -- 0.x 1, (1) 

Cy-¢xj  

where 0 is the pitch of the maximum shearing stress; l, m 
and n are the direction cosines of the normal to a 
slip-plane and O-x, 0.y and 0.z are the principal stresses 
parallel to which the co-ordinate axes have been taken. 
The directions of the maximum shearing stresses were 
assumed to coincide with those of potential slip-move- 
ments (Bott 1959). Bott's formula has been transformed 
here so that the resulting values are obtained in terms of 
azimuth and plunge angles of potential fault striae. 
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Fig. 1. S l i p - m o v e m e n t  direct ions  on var iably  o r ien ted  planes  for different  ( ~atucs. Atro~.s  are  parallel  to the az imuths  o t  
potent ia l  s l i p - m o v e m e n t  ( = s t r i a e )  and indicate the m o v e m e n t  sense of  'hanging-wal ls ' .  N u m b e r s  deno te  dip angles of  striae.  

U p p e r - h e m i s p h e r e  equa l - a r ea  plots a re  used in this d i ag ram and all subsequen t  plots. See text for  details.  

To simplify additional considerat ions two assumptions 
are made:  (1) the X and Y axes of  the co-ordinate  system 
are horizontal  with the Y axis facing northwards,  while 
the Z axis is vertical, and (2) o-~ = ~rf, ~r,. = <r~ and cr, = 

(r3, where ~rt ~> (r, t> (r) and cq # cr~ (otherwise no 
shearing stress could exist). Then 

( '  - - , (2) 
CT x (T~ (T~ - -  ( T  3 

where 1 ~< C ~< ~ ,  the extreme values of  C occurr ing for 
~r~ = (r, and ~r, : ~r~. Both  extreme states of stress 
cor respond to radial stress fields. 

The  computa t ions  of  potential  s l ip-movement  direc- 
tions were pe r fo rmed  for several tens of  or ientat ions and 
for the following C values: C = ~ ,  C = 10, (7 = 2, C = 
1.1 and C = 1. The results, which proved to be analogous 
to those presented by Wallace (1951), are given in Fig. 1. 
The increasing influence of  Cr 2 on s l ip-movement  direc- 
tions with a decrease in C is reflected by the increasing 
deflection of  arrows from the ~r 2 position. The computed  
data were next used for plott ing the traces and poles of  
the m o v e m e n t  planes (Fig. 2). The  results shown in Figs. 
1, 2 and 3 are only those cor responding  to particular 
slip-planes that are arranged along great  circles converg-  
ing at the ~r~, ~r-, or ~r 3 points on the diagrams. Such a 

representat ion of slip-planes was chosen because of  
ccrtain specific propert ies  displayed by groups of  move-  
ment  planes, which are related to sets of  slip surfaces 
arranged in this manner  (see below). 

The pat terns of  M-planes and ~rM-points for C = zc 
(Fig. 2a) and C = 1 (Fig. 2e) clearly confirm the argu- 
ments  raised by Carey (1976) as to the applicability of  
Ar thaud ' s  method.  Namely,  in the case of  a radial stress 
tensor  all the m o v e m e n t  planes have one c o m m o n  inter- 
section point (CIP)  which coincides either with the 
position of ~rt (for ( '  :: ~c) or of  ~r 3 (for (7" = 1). Such an 
a r rangement  of  M-planes involves the distribution of  
rrM-points along a single great circle (GCP) .  This G C P  
is a trace of the plane ~r2(r~ (or? = ~r:~ ) for C = ~ ,  or  of  the 
plane <rl(r: (¢q = ¢r2) for ( ' =  1. 

For stress ellipsoids that depar t  only slightly f rom the 
rotative form (e.g. for C --:: 10 and C = 1.1) (Figs. 2b & 
d) this clear picture of the a r rangement  of  M-planes  and 
7rM-points becomes  partly obli terated.  Nevertheless ,  
the major i ty  of  CIPs tend to be located close to the 
position of  (r I (Fig. 2b) or ¢r3 (Fig. 2d), while most  
rrM-points  tend to be distr ibuted along the arcs ch~r~ or  
~q or... respectively. 

It was also recognized that in the general  case of  a 
triaxial stress field (e.g. for C -- 2) (Fig. 2c) the distribu- 
tion of  m o v e m e n t  planes and corresponding  rr-Mpoints 
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Fig. 2. Pat terns of  M-planes  and ~rM-points for different C values. Traces of  M-planes  are plotted only for faults from the 
0-90 ° quar ter  of the projection circle, whereas  zrM-points correspond to faults from the whole area of the circle. 

continues to be fairly regular. Let  us consider in detail 
the M-plane pat tern for the case of C = 2 (i.e. when the 
principal stresses are, for example:  001 = 2,002 = 1,003 --- 
0; or 001 = 5,002 = 1, 0°3 = - 3 ;  or o- I = 6, 0- 2 = 4,003 - -  2, 
etc.). It may be inferred from Fig. 3 that if: (a) a group of 
fault planes is arranged along a great circle and (b) this 
great circle contains the direction of a principal stress 00, 

then the movemen t  planes traced for those faults inter- 
sect at a CIP located on another  great circle perpendicu- 
lar to the or position. (From now on the great circles 
along which fault planes are distributed and which meet  
requirement  (b), will be called GCFs).  That  is, if a group 
of slickenside planes is perpendicular  to one common 
plane, and the latter plane is itself parallel to one of the 

2 ,62 
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~2 
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62 

Fig. 3. Movement  plane pat terns for C = 2 drawn separately for groups of slickenside lineations distributed along great 
circles containing cr 1 (a), tr2 (b) and tr 3 direction (c). 
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Fig. 4. M-planes pattern for a group of slickenside lineations arranged 
along a great circle which contains no principal stress direction ((' = 2). 

principal stresses, then all the M-planes related to the 
slickenside lineations will form a common bundle with a 
CIP located on the plane which contains the other two 
directions of principal stress. 

In the case under consideration (Fig. 3a), the M- 
planes traced for slip-surfaces of the same strike (i.e. 
arranged along a GCF containing the o'1 direction) inter- 
sect at a CIP lying in the o'2o'3-plane. For a group of faults 
of different strike we derive another  CIP, but still one 
which is located in the same o'2o-3-plane. If  any great 
circles containing poles to slickensided surfaces con- 
verge at the o'2 point, then all the CIPs for such groups of 
slickensides are distributed along the trace of the o'~o-3- 
plane (Fig. 3b). Again, for GCFs converging at o-3, CIPs 
are arranged along the trace of the o-to'2-plane (Fig. 3c). 
A similar behaviour of M-planes would also be observa- 
ble in the cases of C = 10 and C = 1.1, if the general 
pattern of arcs shown in Figs. 2(b) & (d) were resolved 
into three groups, as when C = 2. 

It should be emphasized that the above principle 
explaining the arrangement  of M-planes can be only 
applied to those slickenside groups which occupy GCFs,  
that is the girdles containing the principal stress direc- 
tions (cf. Fig. 4). Thus any given assemblage of slip- 
planes constituting a single GCF corresponds to a bundle 
of M-planes having one CIP. Through this CIP, how- 
ever, movement  planes whose parent slickensides are 
not arranged along the GCF may fortuitously pass too 
(cf. Fig. 8c). 

From Figs. 2 and 3 it may also be concluded that for a 
group of slickensides whose normals are located along a 
GCF,  another  great circle (GCP)  may be defined, com- 
posed of ~rM-poles to the movement  planes, Thus, the 
CIP is an axis of the GCP. Both G C F  and GCP girdles 
intersect at a point corresponding to one of the principal 
stresses. 
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GRAPHICAL DETERMINATION OF 
PRINCIPAL STRESS AXES 

The above principles may be employed to determine 
the orientations of the principal stresses of either a radial 
or a triaxial field responsible for the development  of a 
given fault population. An algorithm of the proposed 
movement  planes method is given in Fig. 5. The follow- 
ing operations require additional comment.  

(1) Hoeppener ' s  (1955) method (modified by Jaro- 
szewski 1972) for the presentation of slickenside lin- 
eation assemblages is recommended  (see Fig. 1 ). 

(2) Orientation data of slickenside lineations resulting 
from different stress fields are often contradictory. 
Slickenside lineations that originated m the same stress 
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Fig. 6. A theoretical slickenside lineation population. Positions of Fig. 7. M-plane pattern corresponding to the slickenside population 
principal stresses are at first unknown, shown in Fig. 6. Circles and a square indicate CIPs analysed in Fig. 8. 

field display patterns similar to those shown in Fig. 1. 
Field observations of the appearance of slickensides 
combined with a knowledge of the structural history of a 
region, should also be taken into account. 

(3) M-planes should be plotted as in Arthaud's  (1969) 
method.  

(4) Diffuse zones of M-plane intersections plotted 
from field data may be regarded as CIPs. The positions 
of the CIPs may be readily determined by plotting 
• rM-points corresponding to single M-plane bundles. 
The (average) axes of the resulting GCPs are equivalent 
to the CIPs of the relevant movement  planes. 

(5) As many as possible CIPs should be separately 
analysed to check whether or not the slickensides corres- 
ponding to the involved movement  planes are arranged 
along great circles (GCFs). 

(6) If more than three slickenside planes are distri- 
buted (at least roughly) along a GCF,  and at large 
angular distances from each other,  the reliability and 
precision of the solution increase. 

It may happen, however,  that from the analysis of 
field data the answer to operation (6) is 'no'  for all the 
CIPs considered. In such a case no solution is likely to be 
found. Likewise, only one principal stress position may 
sometimes be arrived at, namely when all the deter- 
mined 0"-points correspond to the same stress axis. 

Once the directions of 0.1,0"2 and 0"3 have been estab- 
lished, it is possible to calculate the C value from the 
orientation of any slickenside lineation (except for the 
special case of slip-planes parallel to one of the principal 
stress directions). To do this, the slickenside orientation 
should first be found in a co-ordinate system in which the 
determined 0"1,0"2 and ~s directions follow the X, Y and 
Z axes, respectively. Thus, the dip direction Ap and angle 
of dip 4~p of a fault plane are transformed into Ap and ~bp, 
while the trend As and plunge 4~s of striations are replaced 

by A's and tb'~ (see Fig. 9). Next, the direction cosines l, m 
and n of the normal to the slip-plane, as well as the angle 
0 are computed, using the formulae 

t ! l = sin hp sin ~bp (3) 

t t m = cos he sin ~bp (4) 
t n = cos ~bp (5) 

tan (As - Ap - 90 ° ) 
tan 0 = (6) 

t COS t~p 

The value of C is derived from Bott 's (1959) transformed 
equation 

,m } 
C - n ~ - n  3 - t a n  0 . ( 7 )  

APPLICATION TO A THEORETICAL EXAMPLE 

An artificial, previously calculated (C = 2) population 
of slickenside lineations produced in a triaxial stress field 
is given in Fig. 6. The arrangement of movement  planes 
(Fig. 7) displays many CIPs at which three or more 
M-planes intersect. The analysis of the CIPs should 
reveal those that correspond to slickenside lineations 
disposed along great circles (GCFs). Eight such CIPs 
can be found (Fig. 8). When subjected to operation (7) 
of the algorithm from Fig. 5 the procedure yields 0.- 
points at the intersection sites of (1) GCPs and GCFs 
and, independently, (2) individual GCFs passing 
through the same 0.-points (Figs. 8a-e).  The resultant 
principal stress axes are shown on a synoptic diagram 
(Fig. 6), the symbols 0.1, 0"2 and 0- 3 being assigned to 
them on the basis of the known sense of movement  on 
the four faults. Note that the arrows are directed from 
the 0"1 to the 0"3 point and deflect from the 0.2 position. 
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direction and angle of dip; 166/65 is the striation trend and plunge). 

The calculated (' value is 2:0 for each slickenside of 
the population (except one fault located in the (r2(r~- 
plane). The geometric procedure necessary to transform 
the orientation data is shown in Fig. 9 where slickenside 
165) from Fig. 6 serves as an example. 

FIELD APPLICATION 

The method was tested on several field populations of 
slickenside lineations from the Outer Carpathians and 
the Central Sudetes. Positive results were obtained from 
more than one third of these populations. The validity of 
the solutions was checked with the Angelier method 
applied to the same sets of measurements. Moreover, 
most solutions were independently confirmed by the 
orientations of a variety of tectonic structures of local 
and regional significance. 

The most instructive of the analysed examples comes 
from the Mt. Babia Gora region of the Magura nappc of 
the 'Flysch' Carpathians (Fig. 1(I). The Magura sequence 
(Upper Cretaceous to l .ower Oligocene) of that region 
was affected by two main compressive deformation 
phases (Ateksandrowski 1983). The first occurred in tile 
Early Miocene and resulted in folding and thrusting 
(Ksi~!2kiewiez 1977). During this stage qongitudinal" 
folds (FL) developed parallel to the Carpathian chain. 
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represent faults which fit neither of the two reconstructed stress fields. 

The 'diagonal '  FD folds, of N W - S E  trend,  were pro- 
duced by the successive, Late Miocene event (Aleksan- 
drowski 1983). The measurements  were taken in an 
abandoned quarry exposing the Lower  Cig~kowice 
Sandstone (Upper  Palaeocene),  east of Sucha Bes- 
kidzka, close to the Skawa river fault. The thick (up to 5 
m) sandstone beds dip to the south within a monocline.  
The beds show a complex joint pat tern (Fig. 15). Region- 
ally significant kathetal  sets T1 and T2 (constituting a 
complementary  system) and set L are genetically related 

to folds in various parts of  the Western Flysch Carpa- 
thians (Ksi~kiewicz  1968, Tokarski  1975, Aleksan- 
drowski 1983). Set D, on the other  hand, is composed of 
joints transverse with respect to the Fo folds (Aleksan- 
drowski 1983). 

One hundred measured slickenside orientations are 
shown in Fig. 10(b). Two striae orientation modes are 
detectable in the diagram, together with a two-fold 
ar rangement  of movement  planes (Figs. l l a  and 12a) 
permitting almost all the data to be separated into two 

N N 

IP 

cP 
0 point TI IVI. 

x striae projection 

Fig. 11. Group A slickensides. (a) Application of movement planes method. (b) Application of Angelier's method. See text 
for details. 
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groups. Each of these groups was produced in a different 
stress field. Movement planes of the first group of slick- 
ensides (A) tend to intersect in one common zone (Fig. 
11 a). Correspondingly, rrM-points are arranged along a 
single great circle. Group A may therefore be inter- 
preted as having originated in a radially compressive 
stress field (a case to which the classical Arthaud method 
is applicable). Due to the abundance of faults with 
known senses of slip, the Angelier construction can also 
be employed to investigate the group A slickensides. Its 
application yields the same single maximum correspond- 
ing to oq and a diffuse zone of o'3 positions (Fig. 1 lb).  

The second group (B) of faults (Fig. 12a) resembles in 
its radial pattern the slickenside arrays illustrated in 
Figs. 1 (c) and 6. The arrows radiate from an empty area 
(west of the diagram centre); one may expect that this 
area contains the o'~ axis. The arrangement of M-planes 
in addition to the distribution of 7rM-points (Figs, 12a & 
b) is irregular and numerous CIPs are present in the 
diagram. For eight of the CIPs (here zones rather than 
points) the poles to slip-planes tend to occupy great 
circles (GCFs) (Fig. 13). This makes it possible to deter- 
mine the o.t, tr2 and trs positions (Fig. 14a). The relatively 
high dispersion of the location points does not exceed 
that obtained from Angelier's method (Fig. 14b). 

From the data presented in Figs. 10 and 15, it is 
possible to relate the first, uniaxial stress field (A) to the 
F L compressional event. The second of the restored 
tensors (B), however, shows neither any spatial relation- 
ship to the trend of F D fold axes, nor to joint set D, Apart 
from the slickenside lineations, the only structures in the 
outcrop that were probably produced in stress field B are 
calcite veins up to 1.5 cm thick, designated as V in Fig. 
t5. The tectonic extension responsible for the develop- 
ment of the group B slickensides must have taken place 
during one of the post-F o uplift stages. During the same 
extensional event the nearby W N W - E S E  trending seg- 

ment of the Skawa river normal fault presumably 
developed or was reactivated. 

Tentative assessments of coefficient C were made for 
twelve group B faults (Table 1, Fig. 14c). The mean C 
value calculated for eight examples of slickensides 
located far from the principal stress planes is 1.99, 
showing its order of magnitude. At the same time C 
values assessed for slickensides neighbouring the traces 
of the o.~o-2-, O.lo.3- and o.2o.3-planes display considerable 
variations, ranging from 13.34 to - 10.38, that is exceed- 
ing the admissible lower limit of 1.0 because the orienta- 
tion of the stress tensor is a mean and not an exact 
orientation. The inevitable deviations of the natural 
slickensides from Bott 's (1959) equation written for this 
mean stress tensor orientation, are most severe close to 
the principal stress planes. Hence the slickensides 
located in this 'border" zone of the diagram quite often 
contradict assumptions made to calculate C limits. In a 
general case C may range between - m and + ~ (Armijo 
et al. 1982). 

CONCLUSIONS 

The proposed method of analysing the arrangement 
of movement planes supplements the Arthaud method 
and permits its application to slickenside assemblages 
resulting from triaxial stress fields. In comparison with 
Angelier's procedure,  the movement planes' method 
usually gives more precise positions of the stress axes 
and may be used for investigating minor fault popula- 
tions with unknown senses of movement  reflected by 
most of the observed slickensides. 

There are, however, two considerable disadvantages 
to the method of movement planes. Firstly, the proce- 
dure is time consuming (this may be overcome by using 
a computer  program) and needs many measurements of 
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Fig. 13. Determination of principal stress directions for group B slickensides. Shown separately are individual bundles of 
M-planes corresponding to slip-surfaces arranged along GCFs. 

A 

Fig. 14. Results of analysis of group B slickensides. (a) Principal stress axes positions and intersection points of individual 
GCFs (taken from Fig. 13). Triangles show the mean positions of principal stress axes. (b) Results of application of 
A ngelier's method. Mean positions of stress axes from (a) are shown. (c) Group B slickensides and mean positions of stress 

axes from (a). Slickensides indicated with letters are those for which C values have been computed. 
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'Fable I. (" value calculated for chosen group B 
slickensides. 'Border' zone slickensides indicated 

with crosses 

Fault symbol 
in Fig. 14(c) Coefficient C 

a ~ - 10.38 
b + 13.34 
c 1.36 
d 1.22 
e 1.92 
f 1.35 
g+ --1.36 
h t .77 
i+ -0.90 
j 3.87 
k 1.03 
I 3.42 

slickenside orientation to be taken; secondly, even a 
large number of readings does not guarantee a successful 
result. Moreover, if is not possible to predict before 
applying the method whether any particular population 
of data will yield a solution. The resolvability of indi- 
vidual slickenside populations is favoured by a perfectly 
homogeneous causative stress field, the precision of field 
measurements and the fulfilment of other necessary 
conditions, such as no fault-plane rotation during defor- 
rnation and the independence of movement on each 
tault (see e.g. Arthaud 1969, Carey 1976, Angelier & 
Mechler 1977, Armijo et al.  1982). 
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Fig, 15. Joints in the investigated quarry and fold trends from ~ts 
vicinity. Restored positions of A and B stress tensors are given. 

Bedding shown as a broken arc (bedding pole = B). 
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